If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35=g^2-19g+85
We move all terms to the left:
35-(g^2-19g+85)=0
We get rid of parentheses
-g^2+19g-85+35=0
We add all the numbers together, and all the variables
-1g^2+19g-50=0
a = -1; b = 19; c = -50;
Δ = b2-4ac
Δ = 192-4·(-1)·(-50)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{161}}{2*-1}=\frac{-19-\sqrt{161}}{-2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{161}}{2*-1}=\frac{-19+\sqrt{161}}{-2} $
| -18=4(x-3)-6x | | 2x(3x-1)+4=2x-1 | | 150=2(25)+2w | | 90+90+128+x=360 | | -5w+24=9(w-4) | | 105+5x=360 | | 2x=7=53 | | 105+5x=90 | | 2x=70+6x | | a^2-14a+3=34 | | 17-k=31 | | 35+110+12+x=180 | | m^2-8m=-60 | | s+10=21 | | 17(v+8)=816 | | 8(p+2)=40 | | 3=r-15 | | i+14=21 | | 5x+105=360 | | 29(z+32)=986 | | 10+x/3=-12 | | .08a+a=2560 | | e-7=12 | | 16+x/10=2 | | r-13=11 | | 21=f+15 | | 17=k+224/27 | | 16/10+x=2 | | 17=m+15 | | 5x+1+76=360 | | 25(b-963)=700 | | 5x+1+76=90 |